Jirauschek C.

Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany


D03–Numerical Optimization of Quantum Cascade Detector Heterostructures

Popp J., Haider M., Franckie M., Faist J., Jirauschek C.

We demonstrate a Bayesian optimization framework for quantum cascade (QC) devices in the mid-infrared (mid-IR) and terahertz (THz) regime. The optimization algorithm is based on Gaussian process regression (GPR) and the devices are evaluated using a perturbed rate equation approach based on scattering rates calculated self-consistently by Fermi’s golden rule or alternatively extracted from an […]

MM04–Completely Positive Trace Preserving Methods for the Lindblad Equation

Riesch M., Pikl A., Jirauschek C.

The Lindblad master equation is a valuable tool in quantum mechanics, which describes the dynamics of open systems. In the scope of our research, it is combined with the one-dimensional Maxwell’s equations to form the generalized Maxwell-Bloch equations. Since analytical solutions are not available in the general case, numerical methods have to be employed to […]

MM05–Project Skeletons for Scientific Software

Riesch M., Haider M., Jirauschek C.

Although research relies heavily on software packages such as mathematical libraries or data analysis tools, efforts to provide high-quality scientific software are hardly rewarded. As a possible way out of this dilemma, project skeletons can be employed to accelerate software development while ensuring code quality. In this work, we review existing project skeletons and present […]